Recurrent Neural Networks are a type of Artificial Neural Networks which are adept at dealing
with problems which have a temporal aspect to them. These networks exhibit dynamic
properties due to their recurrent connections. Most of the advances in deep learning employ
some form of Recurrent Neural Networks for their model architecture. RNN's have proven to be
an effective technique in applications like computer vision and natural language processing. In
this paper, we demonstrate the effectiveness of RNNs for the task of English to Hindi Machine
Translation. We perform experiments using different neural network architectures - employing
Gated Recurrent Units, Long Short Term Memory Units and Attention Mechanism and report
the results for each architecture. Our results show a substantial increase in translation quality
over Rule-Based and Statistical Machine Translation approaches.