Smart cities utilize Internet of Things (IoT) devices and sensors to enhance the quality of the city
services including energy, transportation, health, and much more. They generate massive
volumes of structured and unstructured data on a daily basis. Also, social networks, such as
Twitter, Facebook, and Google+, are becoming a new source of real-time information in smart
cities. Social network users are acting as social sensors. These datasets so large and complex
are difficult to manage with conventional data management tools and methods. To become
valuable, this massive amount of data, known as 'big data,' needs to be processed and
comprehended to hold the promise of supporting a broad range of urban and smart cities
functions, including among others transportation, water, and energy consumption, pollution
surveillance, and smart city governance. In this work, we investigate how social media analytics
help to analyze smart city data collected from various social media sources, such as Twitter and
Facebook, to detect various events taking place in a smart city and identify the importance of
events and concerns of citizens regarding some events. A case scenario analyses the opinions of
users concerning the traffic in three largest cities in the UAE