In order to treat and analyze real datasets, fuzzy association rules have been proposed. Several
algorithms have been introduced to extract these rules. However, these algorithms suffer from
the problems of utility, redundancy and large number of extracted fuzzy association rules. The
expert will then be confronted with this huge amount of fuzzy association rules. The task of
validation becomes fastidious. In order to solve these problems, we propose a new validation
method. Our method is based on three steps. (i) We extract a generic base of non redundant
fuzzy association rules by applying EFAR-PN algorithm based on fuzzy formal concept analysis.
(ii) we categorize extracted rules into groups and (iii) we evaluate the relevance of these rules
using structural equation model.