The main aim of this study is the assessment and discussion of a model for hand-written Arabic through
segmentation. The framework is proposed based on three steps: pre-processing, segmentation, and
evaluation. In the pre-processing step, morphological operators are applied for Connecting Gaps (CGs) in
written words. Gaps happen when pen lifting-off during writing, scanning documents, or while converting
images to binary type. In the segmentation step, first removed the small diacritics then bounded a
connected component to segment offline words. Huge data was utilized in the proposed model for applying
a variety of handwriting styles so that to be more compatible with real-life applications. Consequently, on
the automatic evaluation stage, selected randomly 1,131 images from the IESK-ArDB database, and then
segmented into sub-words. After small gaps been connected, the model performance evaluation had been
reached 88% against the standard ground truth of the database. The proposed model achieved the highest
accuracy when compared with the related works.