Image segmentation is a critical step in computer vision tasks constituting an essential issue for pattern
recognition and visual interpretation. In this paper, we study the behavior of entropy in digital images
through an iterative algorithm of mean shift filtering. The order of a digital image in gray levels is defined.
The behavior of Shannon entropy is analyzed and then compared, taking into account the number of
iterations of our algorithm, with the maximum entropy that could be achieved under the same order. The
use of equivalence classes it induced, which allow us to interpret entropy as a hyper-surface in real m-
dimensional space. The difference of the maximum entropy of order n and the entropy of the image is used
to group the the iterations, in order to caractrizes the performance of the algorithm.