Android is an extensively used mobile platform and with evolution it has also witnessed an increased influx of malicious applications in its market place. The availability of multiple sources for downloading applications has also contributed to users falling prey to malicious applications. A major hindrance in blocking the entry of malicious applications into the Android market place is scarcity of effective mechanisms to identify malicious applications. This paper presents AndroInspector, a system for comprehensive analysis of an Android application using both static and dynamic analysis techniques. AndroInspector derives, extracts and analyses crucial features of Android applications using static analysis and subsequently classifies the application using machine learning techniques. Dynamic analysis includes automated execution of Android application to identify a set of pre-defined malicious actions performed by application at run-time.