Search Paper
  • Home
  • Login
  • Categories
  • Post URL
  • Academic Resources
  • Contact Us

 

A Review of Prompt-Free Few-Shot Text Classification Methods

google+
Views: 10                 

Author :  Rim Messaoudi, Achraf Louiza and Francois Azelart

Affiliation :  Akkodis Research

Country :  France

Category :  NLP

Volume, Issue, Month, Year :  13, 4, August, 2024

Abstract :


Text-based comments play a crucial role in providing feedback for various industries. However, effectively filtering and categorizing this feedback based on custom context-specific criteria requires sophisticated language modeling techniques. While traditional approaches have shown effectiveness, they often require a substantial amount of data to compensate for their modeling deficiencies. In this work, we focus on highlighting the performance and limitations of prompt-free few-shot text classification using open-source pre-trained sentence transformers. On the one hand, our research includes a comprehensive study across different benchmark datasets, encompassing 9 dimensions such as sentiment analysis, topic modeling, grammatical acceptance, and emotion classification. Also, we worked at making different experiences to test Prompt-Free Few-Shot Text Classification. On the other hand, we underline prompt-free few-shot classification limitations when the targeted criteria are complex. As an alternative approach, prompting an instruction-fine-tuned language model has demonstrated favorable outcomes, as proven by our application in the specific use case of “Identifying and extracting resolution results and actions from explanatory notes”, achieving an accuracy rate of 80%.

Keyword :  Language models, Sentence transformers, SetFit, contrastive learning, distillation, intelligence compression, NLP, semantic similarity.

Journal/ Proceedings Name :  https://aircconline.com/ijnlc/V13N4/13424ijnlc01.pdf

URL :  https://aircconline.com/ijnlc/V13N4/13424ijnlc01.pdf

User Name : Darren
Posted 11-09-2024 on 13:05:30 AEDT



Related Research Work

  • High Accuracy Location Information Extraction From Social Network Texts Using Natural Language Processing
  • Enhancing Sparql Query Rewriting For Complex Ontology Alignments
  • Mathematical Formulas For Generating Syllables Used In Arabic Speech Synthesis
  • Multimodal Large Language Models For Automated Diagnosis And Clinical Decision Support

About Us | Post Cfp | Share URL Main | Share URL category | Post URL
All Rights Reserved @ Call for Papers - Conference & Journals