Machine Transliteration has come out to be an emerging and a very important research area in the field of
machine translation. Transliteration basically aims to preserve the phonological structure of words. Proper
transliteration of name entities plays a very significant role in improving the quality of machine translation.
In this paper we are doing machine transliteration for English-Punjabi language pair using rule based
approach. We have constructed some rules for syllabification. Syllabification is the process to extract or
separate the syllable from the words. In this we are calculating the probabilities for name entities (Proper
names and location). For those words which do not come under the category of name entities, separate
probabilities are being calculated by using relative frequency through a statistical machine translation
toolkit known as MOSES. Using these probabilities we are transliterating our input text from English to
Punjabi.