November 14, 2016
Salt Lake City, UT, USA
The intent of this workshop is to bring together researchers, practitioners, and scientific communities to discuss methods that utilize extreme scale systems for machine learning. This workshop will focus on the greatest challenges in utilizing HPC for machine learning and methods for exploiting data parallelism, model parallelism, ensembles, and parameter search. We invite researchers and practitioners to participate in this workshop to discuss the challenges in using HPC for machine learning and to share the wide range of applications that would benefit from HPC powered machine learning.In recent years, the models and data available for machine learning (ML) applications have grown dramatically. High performance computing (HPC) offers the opportunity to accelerate performance and deepen understanding of large data sets through machine learning. Current literature and public implementations focus on either cloud-‐based or small-‐scale GPU environments. These implementations do not scale well in HPC environments due to inefficient data movement and network communication within the compute cluster, originating from the significant disparity in the level of parallelism. Additionally, applying machine learning to extreme scale scientific data is largely unexplored. To leverage HPC for ML applications, serious advances will be required in both algorithms and their scalable, parallel implementations.
User Name : jerish
Posted 12-08-2016 on 09:05:38 AEDT